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Abstract-A new set of equations describing the growth and evaporation of small liquid droplets in a pure 
vapour are presented. The equations, which model both mass and heat transfer between the droplet and 
the vapour, are in simple closed form solution and are suitable for practical calculations at any Knudsen 
number. The physical model on which the theory is based is essentially that of Langmuir but some novel 
features are incorporated. For example. the velocity distribution function for molecules approaching the 
liquid surface is described by a simplified Grad, thirteen-moment distribution. The results of the analysis 
are in close agreement with other, more complicated and less general theories to be found in the literature. 
In particular, the temperature jump across the Knudsen layer in the continuum limit is accurately predicted. 
It is also shown that Maxwell moment methods based on the Lees, two-stream Maxwellian distribution 

lead to incorrect results. 

INTRODUCTION 

THE GROWTH rate of small spherical liquid droplets 

by condensation from the surrounding vapour has 
been the subject of much investigation since the pion- 

eering analyses of Hertz [l] and Knudsen [2]. Most 
work has been concerned with condensation or evap- 
oration in an inert gas environment (particularly 

for meteorological applications) where the droplet 
growth rate is controlled by diffusive mass transfer. 
The simpler problem of heat transfer limited growth 
in a pure vapour has received less attention and forms 
the subject of the present article. 

In recent years the focus of theoretical work has 
been to describe the complex molecular interaction 
processes in the vapour phase close to the liquid sur- 
face on which condensation is occurring. Most of this 
work is highly mathematical and often the underlying 
physics is obscured by the complexity of the math- 

ematics. Also, many investigators concentrate on just 
one aspect of the problem (e.g. the continuum limit) 
with the result that a set of equations for practical 
calculations valid for all Knudsen numbers is not 
currently available. The present paper attempts to 
rectify this omission. 

Those acquainted with the literature of conden- 
sation will be aware of the confusion which exists 
in the subject. Referring specifically to droplet growth 
in a pure vapour, the following points all require 
clarification : 

(1) Droplet growth under continuum conditions. 
(Theoretical studies of condensation kinetics have 
postulated the existence of a temperature jump at 
the liquid-vapour interface but simple models do not 
predict this effect.) 

(2) Droplet growth at slip and transition Knudsen 
numbers. (Little attempt has been made to assess the 
accuracy of the various proposed interpolation for- 

mulae.) 
(3) The role of the Schrage correction [3] in droplet 

growth theory. 
(4) The roles of the condensation and evaporation 

coefficients and their possible inequality under non- 

equilibrium conditions. 
(5) The complementary roles of the mass and energy 

transfer equations. (Many investigators choose to 
ignore one or other of these equations altogether when 

computing the dynamics of droplet growth or evap- 
oration.) 

(6) The definitions and interpretation of the various 
relaxation times characterizing vapour-droplet flows. 
(These are frequently defined in physically misleading 
ways and, in particular, a correct expression for the 
droplet temperature relaxation time has never ap- 
peared in the literature). 

Definitive solutions are not yet available for all the 
above problems but much progress can be obtained by 
a careful reappraisal and extension of existing ideas. 
Here, we focus on the equations describing the quasi- 
steady mass and energy transfer between a single 
spherical droplet and the surrounding vapour rather 
than on the overall dynamics of droplet growth itself. 

The transport processes in the vapour are first con- 
sidered from the standpoint of macroscopic irre- 
versible thermodynamics in order to obtain the form 
of the required equations. The coefficients of these 
phenomenological equations can only be determined 
via a molecular kinetic theory and we make use of 
the well-known Langmuir model whereby the vapour 
field close to the droplet surface is considered to be a 
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NOMENCLATURE 

A, B, C, D coefficients defined by equations 

(40) and (42) 

“,, isobaric specific heat capacity of vapour 
d total energy flow rate from droplet 

; 
molecular velocity distribution function 

specific enthalpy 
J,,,, J, mass and heat fluxes from droplet 
Kll Knudsen number, i/2~, 

k thermal conductivity of vapour 

L 40,111. L,,, L,,,,. L,, phenomenological 
coefficients 

mass flow rate from droplet 
Prandtl number of vapour. ‘q/k 

pressure 

1),-P> 
heat flow rate from droplet 
condensation and evaporation 
coefficients 
specific gas constant of vapour 
radius 
entropy 
temperature 

T, - T, 

u bulk velocity. 

Greek symbols 
c(,,, Z~ coefficients in expansion of qc/qc 

lj constant to define position of 
Knudsen/continuum interface 

;’ ratio of specific heat capacities 

‘1 dynamic viscosity of vapour 

i mean free path of vapour molecule 

h’ chemical potential per unit mass 

i;r,. r,,> L molecular velocity components 

P density 
0 surface tension of liquid. 

Subscripts 

d droplet 
i interface of Knudsen and continuum 

regions 
ne non-equilibrium region 

s saturated 
\ vapour (far from droplet) 

+ away from droplet 
_ towards droplet. 

collision-free zone, while outside this volume con- 

tinuum behaviour is assumed to operate. Unlike most 
other treatments, however, we model the molecular 
velocity distribution by a simplified Grad distribution 
function and are therefore able to reflect correctly 
(in the shape of the distribution function) the mass 
motion (Schrage effect) and heat transfer to or from 
the droplet. By making suitable approximations, the 
resulting equations for the mass and heat transfer 
rates can be expressed in simple algebraic forms which 

agree quantitatively with numerically accurate, but 
more complex and less general. solutions of the Boltz- 
mann equation. 

We begin with a brief resume of the thermo- 
dynamics and kinetics of vapourdroplet equi- 
librium. 

VAPOUR-DROPLET EQUILIBRIUM 

Consider a small spherical liquid droplet of radius 
rd at rest and in equilibrium in an infinite expanse of 
its own pure vapour. The droplet temperature Tdr 
internal pressure pd, and density pd are uniform 
throughout the droplet and the vapour is assumed to 
behave as a perfect gas with specific gas constant R. 
The vapour pressure and temperature are denoted 
by p, and T,. The thermodynamic and mechanical 
conditions for equilibrium are 

From a molecular-kinetic viewpoint, the condition 
of equilibrium is a dynamic one where the rate of 
condensation of molecules arriving from the vapour 
is exactly balanced by the rate of evaporation of mol- 
ecules from the droplet surface. The molecular con- 
densation rate hi is given by- 

&l = 4nr,‘y, ; py 
J(2xRT,) 

(3) 

T, = T, 

where qc, the condensation coefficient, represents the 
fraction of incident molecules which condense (as 
opposed to being reflected). 

/L CT, 1 P, 1 = AI ( T,I > PHI, 1 At equilibrium p\ = p,. T, = T,, and equation (3) 

where p is the chemical potential per unit mass and 0 

the liquid surface tension. Note that, for very small 
droplets such as occur during the early stages of 
homogeneous nucleation, the internal pressure [I~, 

may be very much higher than the vapour pressure p\ 
due to the large surface curvature. The second of 
equations (1) can be transformed to the alternative. 
Kelvin-Helmholtz. form 

P, = p,(T,,r,) = p,(T,, =) exp 

where p,(T,, x) is the saturated vapour pressure at 
temperature 7’, for a flat liquid-vapour interface. 
(Subsequently, we denote p,(T,. rd) simply by p,.) 
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also represents the mass evaporation rate &I+. The 

maximum value of n;/+ occurs when q, = I and, in 

general, hi, is defined by 

where qc is the evaporation coefficient and is necess- 
arily equal to q,, but onl~~ under equilibrium conditions. 

All theories of droplet growth now make the exper- 

imentally unconfirmed assumption that the evap- 
oration rate is a function only of droplet temperature 

and radius and hence that hj, can be represented by 
equation (4) ezlen under non-equilibrium conditions. 

IRREVERSIBLE THERMODYNAMICS OF 

DROPLET GROWTH 

Consider now the non-equilibrium situation char- 

acterized by a finite net condensation or evaporation 
rate. Such conditions are achievable in two inde- 
pendent ways. Starting from the equilibrium state, the 
vapour temperature can be altered while maintaining 
the vapour pressure constant at the value pb. Alter- 
natively, the vapour pressure can be adjusted while 
maintaining the vapour temperature constant at the 
value T,. The condensation or evaporation rate thus 
depends on the temperature difference AT = (T‘, - TV) 

and the pressure difference Ap = (p,-p”). Many 
treatments of droplet growth incorrectly neglect one 
or other of these thermodynamic driving forces. 

It should be appreciated that Ap does not represent 
a real vapour-droplet pressure difference. In varying 
p, from the equilibrium value p.,, the actual vapour 
pressure at the droplet surface (and also the internal 
pressure of the droplet) establishes itself at a level just 
sufficient to drive the bulk flow of vapour to or from 
the droplet. The pressure difference associated with 
this bulk flow is always small and is usually neglected. 

To apply the formalism of irreversible thermo- 
dynamics, consider the system (closed to the trans- 
fer of mass) shown in Fig. 1. Region D is the droplet 
and includes the surface transition layer. (In keeping 
with the Gibbs treatment of surface thermodynamics. 
liquid properties are assumed to be uniform up to 
the discontinuous liquid-vapour interface, which is 

positioned to satisfy the condition of zero excess sur- 
face mass.) The bulk liquid is assumed to be in a 
quasi-equilibrium state characterized by the droplet 

temperature Td and internal pressure pd, and to be in 
thermodynamic equilibrium with the surface at all 
times. Region V is a vapour reservoir at uniform con- 
stant pressure p, and temperature T,. Region NE is a 

non-equilibrium region. 
It is assumed that quasi-steady condensation is 

occurring and conditions in region NE are time inde- 
pendent. The outer boundary of the system therefore 
moves radially inward at a steady state. The rate of 
heat transfer crossing this boundary (in the outward 

direction) is denoted by e,. The mass flow rate from 

D Liquid droplet 

NE Non-equilibrium region 

- System boundary 

- Heat flux vector 

V Vapour reservoir 

FIG. I. Closed system for the analysis of irreversible entropy 
production. 

the droplet (also in the outward direction) is denoted 
by ti. 

The rate of entropy production due to irre- 
versibilities in region NE has been considered by Lang 

[4], who did not specifically include the effects of sur- 
face energy and entropy. A more formal derivation, 
including these effects, is presented in Appendix A, 
where it is shown that the rate of entropy production 
3 is given by 

g=4m${Jn,($)+Jq(g)}. (5) 

The fluxes J,,, and J, are defined by 

I%? = 4nri J,,, 

i” = 4x,.’ J 

R T,, CJ ‘I 

Equation (5) defines the conjugate fluxes and ther- 

modynamic forces for the application of Onsager’s 
theory. Assuming linear deviations from equilibrium, 
we therefore have 

where L,,,,,, L,,,, L,,,, and L,, are dimensionless phe- 
nomenological coefficients. (The factor p/J(ZnRT) 
has been introduced for convenience and, as equa- 
tion (7) describes linear departures from equi- 
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librium, p and Tcan be evaluated at either droplet or ies of condensation on plane [6] and spherical surfaces 
vapour conditions.) [7, 81. Unfortunately, however, it has serious short- 

The problem, therefore, is to obtain expressions for comings. In reality, the transition from the continuum 

L &I,,, ,I/,,/ 3 L,,,, and L,,. These cannot be dctermincd to the kinetic region is gradual rather than instan- 
from a thermodynamic analysis and must be derived taneous and the velocity distribution of inwardly mov- 
from a molecular kinetic model. However, Onsager’s ing molecules is modified somewhat by collisions in 
reciprocal theorem ensures the equality L,,,,, = L,,,,,. the Knudsen layer. Nevertheless, as we shall see, the 

Langmuir model, in a refined form, can yield results 

KINETIC THEORIES OF CONDENSATION 
which arc comparable to those obtained by much 
more complicated methods. 

The essential problem in formulating a kinetic the- 
ory of droplet growth is to obtain an expression for 
the velocity distribution function of those molecules 
situated in the vapour directly adjacent to the liquid 

surface which have velocity vectors pointing in the 
direction of the surface. (The distribution function for 
molecules leaving the surface is assumed known.) The 
Knudsen number is here defined by Kn = ii2r, (as 

opposed to the more common Kn = E./r,). where 1. is 
the mean free path of a vapour molecule and is given 

by the kinetic theory expression 

q being the dynamic viscosity of the vapour. 
The simplest model of heat transfer in arbitrarily 

rarefied gases can be traced to Langmuir [S]. In the 
Langmuir model, shown in Fig. 2, the non-equi- 
librium region is divided into two parts. Far from the 
droplet the continuum equations of fluid mechanics 
are assumed to apply, while close to the liquid surface 

molecular collisions are supposedly unimportant and 
the exchange processes can be described by the equa- 
tions of free molecule kinetic theory. The inner region 
is known as the Knudsen layer and its interface with 
the continuum region is arbitrarily fixed at a radius 
r, = r;, +[{I where /j is an unknown constant of order 

unity. 
The Langmuir model has been used for several stud- 

Continuum region 
(Grad distribution) 

Liquid droplet (0 < r < I,) 

Continuum region (r, < r < co) 

(r, = r, + P 1) 

FIG. 2. The Langmuir model. 

Ideally,-the droplet condensation problem would 

be solved by integrating the Boltzmann equation 
across the Knudsen layer subject to suitable boundary 
conditions. This approach has been adopted for stud- 

ies of plane evaporation and condensation [9914] but 
the analyses are mathematically complicated and 
major simplifications arc required. Recently, however. 
Chernyak and Margilevskiy [I51 have obtained a 

numerical solution of a model Boltzmann equation in 
the vicinity of a condensing droplet for a monatomic 
vapour and their results provide a useful test of accu- 

racy for the theory described below. 
Direct solutions of the Boltzmann or BGK-type 

equations are complete in that they give the spatial 

variation of the molecular velocity distribution func- 
tion. An alternative, and simpler, approach is the 
Maxwell moment method which seeks to satisfy the 
first few moments of the Boltzmann equation using 
an assumed test form of the velocity distribution func- 
tion. (It is worth noting that Langmuir-type methods 

are fundamentally Maxwell moment methods where 
the test function only satisfies the moment equations 
corresponding to mass and energy conservation.) 

Maxwell moment methods for droplet growth were 
pioneered by Sampson and Springer [ 161 and Shankar 
[I71 using a linearized four-moment method with 
Lees’ two-stream Maxwellian as the test distribution 
function. Both papers have been very influential and 
have formed the basis for later developments on the 
same theme, notably rcfs. 14, IX. 191. Unfortunately, 
however, the four-moment method based on Lees’ 
distribution function gives an equation of mass trans- 

fer which is seriously incorrect. Such a conclusion was 
presented in ref. [ 151 and is confirmed by the prcscnt 
analysis. The physical reasons for the failure of the 
two-stream Maxwellian to describe the kinetics of 
calculation are discussed below and must call into 

question the validity of this approach for other rar- 

efied gas problems. 
We now present a new theory of droplet con- 

densation based on the Langmuir model shown in 
Fig. 2. 

CONTINUUM REGION ANALYSIS 

For Y, < r < zx the conservation equations of con- 
tinuum fluid mechanics are valid. (Properties at the 
Knudsen/continuum interface are denoted by sub- 
script i and far from the droplet, where the bulk vel- 
ocity is zero, by subscript v.) Assuming steady-state 
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condensation and neglecting viscous normal stresses. 
the conservation equations of mass, momentum and 
energy can be written as 

$r2pu) = 0 

r2 $ + (r2pu) g = 0 

(r~p.)%jl+~)-~(r~k~~)=O (9) 

where u is the radial (outward) bulk velocity, h the 

specific enthalpy and k the thermal conductivity 
(assumed constant). 

The mass continuity and energy equations can be 
integrated directly to give 

ti = 4nr’pu = constant 

ri‘= ni h+ f -4nr’kg = constant (10) 
( I 

where n;/ and I? are the mass and total energy flow 
ratesfiom the droplet. 

Approximate integration of the momentum equa- 
tion from the far field to the interface r = r, and sub- 

stitution of the perfect gas equation gives 

Pv-PI u,” 

P” 2RT,, (11) 

where T,, is a suitably defined average vapour tem- 
perature. The analysis is now restricted to slow, 
subsonic condensation (]u,/,,/(2RTJ] = O(E), where 
E CC 1). Neglecting terms of O(E’), then justifies the 
approximation 

PI = P” (12) 

which will subsequently be adopted. 

The above approximation also allows the neglect 
of the kinetic energy term in the energy equation (10) 
which can then be integrated subject to the boundary 
conditionsT=‘I;atr=r,andT+T,asr-tco.The 
solution for the temperature distribution is 

T- T,, 1 - exp (- A?c,,/4mk) 
-- 
T, - TV = cxp ( - &c,/4m,k) (13) 

where c,, is the isobaric specific heat capacity of 
the vapour. We now make the assumption 
jhjc,,/4nr,kl CC 1 ( see Appendix B) so that equation 
(13) reduces to 

T- TV r, 

T--T, ‘;’ (14) 

The total energy flow rate is then 

8= ~h,+ei = n;lh,+Q, (15) 

where 0 is the heat 9ow rate, at arbitrary radius r > r,, 

given by 

0 = -4nr’kg = 4rcr,k(T, - TV) -h?c,,(T- TV). 

(16) 

THE MOLECULAR VELOCITY DISTRIBUTION 

FUNCTION 

For r > r, the vapour is in a non-equilibrium state 
and the molecular velocity distribution is not well 
approximated by a Maxwellian distribution even with 

a superposed bulk velocity as suggested by Schrage 
[3]. A much better approximation which is compatible 
with the Navier-Stokes equations is Grad’s thirteen- 
moment distribution [20]. Neglecting viscous normal 

stresses and assuming spherical symmetry, the Grad 
velocity distribution is given by 

xexp {-[(5,-~)‘+5H2+5~]/2RT} (17) 

where (5,. &, <,,,) are the molecular velocity com- 

ponents in spherical polar coordinates, p is the local 
density, T the temperature, u the bulk velocity and q 
the radial heat flux (Q/4d). 

The Grad distribution is an approximation for a 
monatomic gas but it can be applied to polyatomic 
gases if it is assumed that the rotational and 
vibrational energy is not correlated with the trans- 
lational kinetic energy. 

Equation (17) should be a good representation of 
the real molecular velocity distribution in the con- 
tinuum region and, in particular, we assume it to apply 
at the interface r = r,. It is further assumed that the 
distribution function for molecules arriving at the 
liquid surface (4, < 0) is unaltered from that at r = r,. 

This assumption is crucial and would only be correct 
if the molecules suffered no collisions whatsoever in 

travelling from r = r, to the droplet surface. Unfor- 
tunately, this approximation is patently untrue, 
because molecules evaporating from the droplet sur- 
face undergo a transformation from a half-Maxwell- 
ian to a half-Grad distribution during their outward 
passage across the Knudsen layer and this is brought 
about purely by the effect of molecular collisions. 
However, in order to introduce more flexibility into 
the specification of the distribution function at the 
droplet surface, it is necessary to include equations 
for the momentum exchange and higher moments of 
the Boltzmann equation. The analysis in spherical 
geometry then becomes very awkward if a simple, 
closed form solution is required. 

Despite these difficulties, there is some evidence 
which suggests that the approximations involved in 
specifying the molecular velocity distribution as 
described above are not as serious as they apoear at 
first glance. In ref. [6], Labuntsov and Kryukov used 
a rather similar Grad moment method to analyse con- 
densation at a plane surface. Their assumed dis- 
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tribution function (at the liquid surface for t, < 0) 
was similar to equation (17) except that it was mul- 
tiplied by a constant C to allow for variations across 
the Knudsen layer. The conservation of momentum 

as well as of mass and energy was applied to fix the 
value of C, although this required that the equations 
be solved numerically rather than algebraically. In all 
examples considered, the calculated value of C was 
very close to unity and this applied even when the 
bulk velocity was a significant fraction of the speed of 
sound. 

WC therefore assume the velocity distribution in the 
vapour at the liyui6cupour intrrfuce to be as follows : 

(i) for (0 < 5, < X) 

exp [- (4’ + i;,? + 5,;)/2RT,,] (18) 

(ii) for (-Cc < <, < 0) 

xexp (-[(~,-u,)~+Ti:+r~~]/2RT,). (19) 

In equation (18), p, = p,/RT,. 

KNUDSEN LAYER ANALYSIS 

The rate of mass transfer from the droplet surface 
is given by 

hi = q&Q+ +(I -q,)hj -hi = q,ti+ -q,hi 

(20) 

where 

n;l, = 4rrrS 

and 

I I 
hi = 4nri 

s j.i 0 
, Lfm d5, d5,, d5, 

The triple integrals of the above and later equations 
can be performed analytically by substituting equa- 
tions (18) and (19) and using tables of standard 
integrals. The procedure is straightforward but alge- 
braically tedious. In deriving equation (22), we 
have assumed that the dimensionless heat flux 
I(qi/RTi)J(2~RTi)/pi( = O(E), and have neglected 
terms of 0(&l) (see Appendix B). 

Substituting equations (21) and (22) into equation 
(20) gives 

Noting from equations (IO) that 

results in 

(25) 

From equation (12), we have p, = p,. As Kn + -L. 
I’, ---t l-c, T, + T, and we recover the Hertz-Knudsen 
equation. As Kn + 0, r,/r‘, -+ I and apart from the fact 
that T, # T,. we have Schrage’s result [3] for a plane 
liquid-vapour interface. Equation (25) thus shows 
how Schrage’s correction enters into droplet growth 
theory in a logically consistent and physically satisfy- 
ing manner. Unlike Schrage. however, we shall intro- 
duce a correction due to the dependence of T, on &I 
and this will have the effect of making an adjustment 
to the coefficient in parentheses on the left-hand side 
of equation (25). 

We now derive an expression for the total energy 
flow rate from the droplet assuming that the rotational 
and vibrational energies of polyatomic molecules arc 

uncorrelated with their translational kinetic energies. 
We also assume that molecules reflected from the 
droplet surface emerge with a half-Maxwellian dis- 
tribution characterized by the liquid temperature (i.e. 
complete thermal accommodation). Thus 

ri= [q,hi’+ +(I -q,)ti ] 

- [Ed +ti cc,,- ‘?“)T,] (26) 

where B_ is the translational kinetic energy how rate 
of molecules directed towards the surface. .z? is given 

by 

C = 47vi 
s !j’ ’ 0 

~, 2<,(<‘+<,;+t,;).f’ d:,d<,,d;,,, 

where terms of O(E’) have been neglected. Note that 
the term in equation (27) involving u, is equivalent to 
Schrage’s correction applied to the energy rather than 
the mass transfer process. The term involving q, is due 
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to the distortion of the distribution function from the 

equilibrium Maxwellian form at r = Y, to allow the 

representation of the heat flux. 
Substituting equations (21), (22), (24) and (27) into 

equation (26) gives 

X 

Equations (25) and (28) are expressions for the mass 
and energy transfer rates in terms of the thermo- 
dynamic properties at the droplet surface and the 
Knudsen-continuum interface. 

THE INTERFACE TEMPERATURE Ti AND THE 

TEMPERATURE JUMP AT THE LIQUID 

SURFACE 

The interface temperature T, can be obtained by 
equating the continuum and Knudsen layer 
expressions for 6. Thus, combining equations (I 5), 
(16) and (28) and rearranging, we have 

X (Td-T,)-F (29) 1 
We now make the assumption (valid for most prac- 

tical cases of droplet growth), that the droplet- 
vapour temperature difference is small compared 
with the absolute temperature, ](Td - T,)/T”I CC 1. The 
final bracket in equation (29) therefore becomes: 
(c,-R/2)(Td-TJ-RT,/2 = -RT,/2. 

Defining the vapour Prandtl number by Pr = c,,q/k 
and using equation (8), we have 

Introducing equation (30) into equation (29) gives 

i 
rdlr, +(~j~}(s!$) 

(I -r:/2r,Z) 

= (g8).1)F(Zgz) + (?zJ(y2;wJm 

(31) 

where J,, is the mass flux defined by equation (6). 
Equation (31) is an expression for the temperature 

difference (r, - q) between the droplet and the inter- 

face at r = r, in terms of the overall droplet vapour 

temperature difference ( Td - T,,) and the mass flux .I,. 
It is valid for all values of the Knudsen number and 

includes the effects of surface curvature for very small 
droplets. The ratio r,/rd is a function of the Knudsen 
number only and is given by 

r, rd + &I -=-------= 
rd rd 

1+2/IKn 

where /I is an, as yet, unknown constant of order 
unity. (Subsequently, we show by comparison with a 
direct numerical solution of the Boltzmann equation 
that B z 0.75.) 

For droplet growth under free molecule conditions, 
Kn + co, rd/r, + 0 and T, + TV as expected. For drop- 
let growth under continuum conditions, Kn + 0, 
rdlr, --t 1 and 

y-l 24, 
= n 4 1 qTi j@j’ (33) 

Evidently, in the continuum limit, the model predicts 
a temperature jump across the Knudsen layer (the 
thickness of which tends to zero) which is proportional 
to the mass condensation rate. 

Most theories of condensation in the continuum 
limit assume that the temperature is continuous at the 
droplet surface (7; + T, as Kn + 0). However, it can 
be seen from equation (33) that this is only true as 
the condensation rate itself tends to zero. The true 
boundary condition for applying the continuum equa- 

tions at a condensing or evaporating droplet surface 
in the limit Kn + 0 is, T = T, # Td in the vapour at 
r = rd. 

The temperature jump across the Knudsen layer 
and the effective boundary conditions to be applied to 
the continuum equations has provoked considerable 
discussion in the literature in the context of plane 
condensation. A solution of the linearized BGK equa- 
tion for this problem has been given by Sone and 
Onishi [ 121 for a monatomic gas which can be written 
as 

as Kn + 0. (34) 

Substituting 7 = 5/3 for a monatomic gas into equa- 
tion (31) gives 

as Kn + 0 (35) 

which is, indeed, a remarkable agreement. Unlike 
the analysis of ref. [12], however, equations (31) and 
(33) also apply to polyatomic vapours, although, 
as yet, there are no analytical or numerical solutions 
of the Boltzmann equation available for assessing 
the accuracy of the result. 
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L3 r, Radius 

a) Condensing droplet, Kn - 0. 

I 
r 4 
I I 
1 
I + Continuum region - 

, , c 
6 r, Radius 

b) Condensing droplet. Kn = O( 1). 

FIG. 3. Schematic diagram of the temperature distribution 
near a condensing droplet at different Knudsen numbers. 

Equation (35) shows that, for droplet condensation 
under continuum conditions (u, < 0), the temperature 
T, is always higher than the temperature Td of the 
condensing surface. (The opposite effect is found for 
evaporation (ui > O).) For steady condensation (when 
the droplet temperature remains constant with time), 
the enthalpy of phase change is conducted UWUJ 
from the liquid surface and the temperature distri- 
bution surrounding the droplet takes the (initially sur- 
prising) form shown schematically in Fig. 3(a). At 
higher Knudsen numbers, the temperature difference 
( Td - T,) must be calculated from equation (3 I) rather 
than equation (33) and it is then found that, for u, < 0. 
the temperature T, falls below Td, see Fig. 3(b). 

The physical reason for the existence of a tem- 
perature jump (Td- T,) in the continuum limit has 
been discussed by Sone and Onishi [12]. Briefly, it is 
caused by the selective effect of the absorbing liquid 
surface which removes molecules arriving at the sur- 

face (having a velocity distribution characterized by 
a finite bulk velocity and radial heat flux) and replaces 
them with an evaporative flux which is precisely half- 
Maxwellian. 

THE CONDENSATION AND EVAPORATION 

COEFFICIENTS 

At thermodynamic equilibrium, the coefficients q, 
and q, are equal, but this is not necessarily so when 
net condensation or evaporation is occurring. For a 
linearized analysis, Ap/p CC 1, AT/T cc 1 and 

where a,, and ~1~ are defined by 

(36) 

~(qc/q,) 
” = a(AT/T) A,,_*? _ (,’ I 1 (37) 

As shown below, ct,, and ~1~ are not independent and 
are constrained by the Onsager reciprocal relation. 

Due to lack of experimental evidence to the 

contrary, it is normal practice to set aP = c(~ = 0 for 
practical calculations. Maximum growth or evap- 
oration rates are then obtained when q, = q, = I. 

Reduced growth rates correspond to qc = qc < I and 
the specification of q, < I is then a useful artifice for 
matching theory to experiment (see Mozurkewich [21] 
for a discussion on measurements of the condensation 
coefficient). However, as noted in ref. [22], some 
(indirect) experimental evidence exists to suggest that 
the Hertz-Knudsen theory underpredicts the free mol- 
ecule growth rate of small water droplets in low press- 

ure, pure steam by a factor of about 2. The only 
way to reconcile this discrepancy with droplet growth 
theory appears to involve specifying yC = I and 

qc/q, < I for non-equilibrium condensation. 

GENERALIZED EQUATIONS FOR DROPLET 

CONDENSATION AND EVAPORATION 

Assuming Appip CC I and AT/T K I, the mass trans- 
fer equation (25) can be written as 

=qc (l+3p)$+a,~;-~ 
II 2T 1 

(38) 

where AT, = Td- T, and x,, and a, are defined by 
equations (36) and (37). Introducing equation (31), 
we obtain 

where 

(40) 
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The coefficients L,,,,, and L,,, in the phenomenological 

mass transfer equation (7) are therefore given by 

L mm = 
[ 1 %U +q D 

-qdCP-G) 
1 

(47) 
L, = 

D 
(41) 

The inclusion of the factor pjJ(2nRT) in equation 
(7) suggests that the variation of Kn is with respect to 

where 

and 

the free molecule limit. The equations can also be 
written with respect to the continuum limit and this 

1 
(42) 

is achieved simply by substituting equation (30). 
Comparing equations (41) and (47), Onsager reci- 

procity requires 

c 
q.= - - tip 0 2 

(48) 

(43) so that, for the limiting cases 

/I being an (as yet) undetermined constant. Due to 
the linearized nature of the analysis, the factor 
p/J(2nRT) can be evaluated at the equilibrium 
vapour pressure and temperature. It should also be 
noted that A is a function of /? and Kn only. 

An equation for the heat flux J, can be derived 
in a similar way. From equation (16) evaluated at 
T = T,,(r --t a), and definition (6) of J, 

Jq = ($)[ (?&:j - (%)I. (4) 

In terms of the definitions (40) equation (31) can be 
written as 

Hence 

J, = (,$)(&)g - (&)+ (46) 

where use has been made of relationship (30). 
The form of equation (46) stresses the link with 

the continuum heat transfer coefficient (k/rd) in the 
absence of condensation. The factor (r,/rd)(A/(A + B)) 

can then be interpreted in the usual way as a correction 
for rarefied gas effects. The term proportional to J,,, 

is related to the continuum temperature jump at the 
liquid surface discussed in the previous section and 
does not appear in simpler theories of droplet growth. 
Note that, as r, + m (Kn + co), the Hertz-Knudsen 
expression for J;, is recovered. 

The phenomenological coefficients L,,,, and L,,, are 
obtained by combining equations (39) and (46) 

“7’ - (,~)(~)~p (Kn-to) 

% 
XT’ -- 

2 
(Kn -+ co). (49) 

It must be conceded that, from physical consider- 
ations, such behaviour seems unlikely and, despite 
the experimental evidence cited previously, it is most 
probable that M,, = rT = 0 and qe = ye even under non- 

equilibrium conditions. 

COMPARISON WITH OTHER THEORIES 

A numerical solution of a simplified Boltzmann 
equation for droplet condensation in a pure mon- 
atomic gas has been obtained by Chernyak and Mar- 
gilevskiy [15]. Their results, converted to the present 
notation, are reproduced in Figs. 4-6. Figure 4 shows 

L m,,, > Fig. 5 shows -L,,,, and Fig. 6 shows L,,. All 
curves are plotted as functions of Kn for the particular 
case qc = qe = 1. Also included are results from the 
present theory computed from equations (41) and 
(47) for y = S/3, Pr = 2/3 and various values of b 
(see equation (43)). Best agreement is obtained with 
B = 0.75, although the coefficients L,,, and L,, are 
comparatively insensitive to the value chosen. 

Taking /I = 0.75, excellent agreement between the 
present theory and that of ref. [IS] is obtained for 
Knudsen numbers in the continuum and slip regimes. 

The correct free molecule limit is also recovered 
for Kn -+ x. The largest discrepancies occur for 
Kn = O(l), although even here variations in cal- 

culated growth rate due to such discrepancies are 
small. It must also be remembered that the com- 
parison is with a numerical solution of a model Boltz- 
mann equation and not with experimentally measured 
values. Comparison with the results of ref. [15] for 
other values of qc (with /, = 0.75) shows equally 
impressive agreement. 

Figures 46 also show curves calculated from the 
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1.4 i 
l Numerical resulb from [IS] 

i 
o Analytical results from [16,171 

4 
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Flc;. 4. Variation of L, ,,,,, with Knudsen number for q, = q, = I. 

theories of Sampson and Springer [16] and Shankar 
[17]. It is evident that these theories predict quite a 
different trend for the coefficient I!,,,,,,,. (The coefficient 
L,,,, also displays significant differences.) The dis- 
crepancies stem from the representation of the molec- 
ular velocity distribution function at the liquid 
surface. Molecules are assumed to leave the surface 
with a half-Maxwellian distribution and this is cor- 
rectly modelled by all theories (,f’_ of equation (17) 

in the present paper). The distribution function of 
molecules approaching the liquid surface, however. is 
perturbed from the Maxwellian shape by the net bulk 
velocity and heat transfer. Both refs. [ 16, 171 adopt 
Lees’ distribution function which is constrained to 
rcprcsent ,f’ by a half-Maxwellian and which does 

not allow sufficient flexibility for modelling the true 
distribution function which is much closer to the rep- 
resentation ,I’ of equation (19). 

Finally, it should be noted that the analytical results 
of rcfs. [ 16. 171 satisfy the Onsager reciprocal theorem. 
Evidently, satisfaction of this theorem is no guarantee 
of the accuracy of the solution. 

CONCLUSIONS 

A new set of equations describing the condensation 
and evaporation of small liquid droplets in a pure 
vapour has been derived. The equations (which are in 
explicit, algebraic form) specify the heat and mass 
transfer between the droplet and vapour in terms of 

1 o Analytical results from [16,171 

0.001 0.010 O.lOC! 1.000 10.000 

Knudsen number 

FIN;. 5. Variation of -L,,,,, with Knudsen number for y‘ = ~1~ = I 
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s Numerical results frum /lSI 
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FIG. 6. Variation of L, with Knudsen number for q< = qc = 1. 

the temperature difference AT = (7’,,- T,) and the 

pressure difference Ap = (pS-pV). The relevant ex- 
pressions are given by equations (7) with the pheno- 
menological coefficients defined by equations (41) 
and (47). The theory is valid for polyatomic gases 
at arbitrary Knudsen number and, apart from the 
condensation and evaporation coefficients, contains 
no arbitrary constants. 

Unlike other simple theories of droplet growth, the 
present theory successfully models most features of 
the kinetics of condensation which are usually only 
revealed by complex analytical and numerical solu- 
tions of Boltzmann-type equations. Thus, the tem- 
perature jump across the Knudsen layer in the con- 
tinuum limit agrees closely with the analysis of ref. 
1121. The arbitrary constant B which specifies the 
blending of the Knudsen and continuum regions has 
been fixed by comparison with a numerical solution 
of a BGK-type equation for a monatomic gas [I5]. 
Hitherto, the impossibility of specifying this interpo- 
lation constant has been a serious weakness of theories 
which do not utilize the higher moments of the 
Boltzmann equation invoking the collision integrals. 
The present theory also illustrates the precise way in 
which the much discussed Schrage correction [3] is 
incorporated in droplet growth theory in a physically 
satisfying way. 

Finally, the theory reinforces a conclusion of ref. 
fl5J and demonstrates the inadequacy of Maxwell 
moment methods using the Lees, two-stream Max- 
wellian distribution [4, 16-191. 
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where use has been made of the equality A?<! = PM (the 
negative of the mass condensation rate). 

A droplet of radius T,, and temperature T‘, would be in 

APPENDIX A. ENTROPY PRODUCTION RATE equilibrium with vapour at temperature T, and pressure 

The rate of entropy production s due to irreversibilities 
p\ = ,r>,( r,,. rd). The internal pressure of such a droplet would 

originating in the non-equilibrium region of the system 
bep,, = p,+ 20/r,,. Using the thermodynamic relationship for 

shown in Fig. 1 is given by 
a pure substance. (c?p/?p) i = I ;(I, we can therefore write 

where .S,. S,, and S, are the entropies of regions D. NE 
and V, respectively. Invoking the quasi-steady assumption. 

From the second of equations (I), pc,r( T,,. p,,,) = ,I’, (T,,, p,). 

s.... = 0. 
Noting that (pd,-p,,) = (p,,-p,), we have 

“kc, is composed of contributions from the bulk liquid (S:,) 
and the droplet surface (Sg). Thus 

s,, = s:, +sj. (AZ) Making the approximation /I\;()~ cc I (i.e. neglecting the 

Treating region D as an open system and assuming liquid specific volume compared with that of the vapour), the 

Si, = S:,(E;, V,, Md) where E:, is the contribution to the final terms in equations (AIO) and (A12) may be discarded. 

droplet energy from the bulk liquid. I“, the droplet volume Substituting equation (A12) into equation (AIO) then gives 

f ,I 1 d ’ d 

where F~, = nd( T,, p‘,,) is the chemical potential per unit mass 
of the droplet. 

i 

Assuming Ss = S:;(E:;. A,,) where E; is the contribution Assuming the vapour to behav*e as a perfect gas and 

to the droplet internal energy from the surface and A, the using the definitions and approximations (T,,- T, ):‘Td = 

droplet surface area, then AT/T,, << I and (p,-pL)!p, = Ap/p, cc I. gives 

(A4) 

where o is the surface fret energy per unit area (surface 
tension). 

Introducing the definitions of the fluxes J,,, and J,,. equations 

Combining equations (A2) (A4) and noting that 
(6). finally result in 

k,, = 3 ri, ilrd gives 
~~I~~~iJ,,,ia!+~,,(~~~. (Al5) 

,q d = 1-i. +!I! p _‘r,‘,cj 
T, ” T, ” r,, ” 

(A5) 

where E,, = E; + Ea and p,, = p<,, - kirk, is the pressure in the 
W/JOW at the droplet surface. 

Treating region V as an open system and assuming 
S, = S,(E,. J’,. M,) where E,, V, and M, represent the 
internal energy. volume and mass of the region respectively, 
then 

where ~1~ = n>( T,, p)) is the chemical potential per unit mass 
of the vapour. 

APPENDIX B. ASSUMPTIONS OF THE THEORY 

The physical interpretation of the assumptions introduced 
into the analysis is not obvious and requires explanation. 

Firstly, the analysis is restricted to slow. subsonic con- 
densation or evaporation, Ju,/,!(2RT,)J << I. A further rcstric- 
tion is also imposed by the condition, Ihicp/4rir,kl << I. Using 
the definitions of J,,,, Pr and Kn, this can also be written as 

(BI) 

Application of the conservation of mass and the first law 
of thermodynamics to the complete system gives 

Equation (BI) takes its strongest form in the continuum 
limit, Y, + rd. where it becomes (using the first of equations 

ti,+hj,, =o (A7) (7)) 
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The results of the analysis (equations (41)), show that, 
as Kn + 0 and assuming 9c = yc, L,,,,,, = O(9,) and 
L,, = O(9, Kn). The satisfaction of equation (B2) therefore 
requires 

AT I 
m__ << p. (B3) 

I 9, 

The condition on Ap/p is therefore more restrictive than that 
on AT/T. 

In developing equations for the Knudsen layer, we also 
introduced the assumption that the dimensionless heat tlux 
I(q,/RT,)J@tRT,)/p,I cc I. Noting that J,, = (q,/R7;) and 
introducing the second of equations (7), we therefore require 

(B4) 

An examination of equation (47) for 1. ,,, and L,,,,. qhnws that 
equation (B4) is always satisfied 11 

A/, I ~ <<- 
P c 

In order to relax the constraint on Apip implied by equa- 
tion (B3), a non-linear analysis is required. This has been 
performed (but only for a monatomic gas with Kn << I) by 
Onishi [23] using a theory developed by Onishi and Sone 
[24] which is based on an approximate analytical solution of 
the BGK equation. In this connection. it is interesting to 
note that the requirement. equation (Bl). can be expressed 
in an equivalent form. (Mu~Knl cc I, where Ma is the Mach 
number of the vapour flow. This is exactly the condition 
necessary for the validity of the earlier linearized analysis of 
Sone and Onishi (121. 

CONDENSATION ET EVAPORATION DE GOUTTELETTES LIQUIDES DANS UNE 
VAPEUR PURE A UN NOMBRE DE KNUDSEN QUELCONQUE 

R&urn&On prCsente un nouveau systkme d’kquations qui dCcrit la croissance et I’i‘vaporation de gout- 
telettes liquides dans une vapeur pure. Les kquations qui modtlisent le transfert de masse et de chaleur 
entre la gouttelette et la vapeur conviennent aux calculs pratiques pour un nombre de Knudsen quelconque. 
Le modt?le physique, sur lequel la thtorie est baske, est essentiellement celui de Langmuir mais des id&es 
nouvelles y sont introduites. Par exemple, la fonction de distribution des vitesses pour les mol&ules qui 
sont proches de la surface du liquide est d&rite par une distribution de treiziime moment simplifi&e de 
Grad. Les rCsultats de l’analyse sont en bon accord avec d’autres thkories plus compliqutes et moins 
gCntrales que I’on connait. En particulier le saut de tempkrature i travers la couche de Knudsen, i la limite 
du milieu continu, est correctement prCdit. On montre aussi que les mCthodes de moment de Maxwell, 

baskes sur la distribution maxwellienne, conduisent B des rt-sultats incorrects. 

KONDENSATION UND VERDAMPFUNG VON FLiSSSIGEN TRijPFCHEN IN REINEM 
DAMPF BE1 BELIEBIGER KNUDSEN-ZAHL 

Zusammenfassung-Wachstum und Verdampfung von kleinen Fliissigkeitstr6pfchen in einem reinen 
Dampf werden mit Hilfe eines neuen Gleichungssystems beschrieben. Die Gleichungen, mit denen der 
Stofl- und der Wirmeiibergang zwischen Tropfen und Dampf modelliert wird, sind in einfacher ge- 
schlossener Form liisbar und fiir praktische Berechnungen bei beliebiger Knudsen-Zahl zu verwenden. 
Das zugrundeliegende physikalische Model1 entspricht im wesentlichen demjenigen von Langmuir, jedoch 
werden einige neue Merkmale mit eingegliedert. So wird z. B. der funktionale Zusammenhang fiir die 
Geschwindigkeitsverteilung der Molekiile bei Annlherung an die Fliissigkeitsoberfllche mittels einer 
vereinfachten Verteilung mit I3 Momenten nach Grad beschrieben. Die Ergebnisse der Berechnung stim- 
men gut mit solchen aus der Literatur iiberein, die auf komplizierteren und weniger allgemeinen theo- 
retischen Vorstellungen beruhen. Insbesondere wird der Temperatursprung in der Knudsen-Schicht an der 
Grenze des Kontinuums genau vorhergesagt. Es zeigt sich such, dal3 die Impulsverfahren nach Maxwell. 

die auf der Zweistrom-Maxwell-Verteilung nach Lees beruhen. zu falschen Ergebnissen fiihren. 

KOHAEHCA4HX H HCHAPEHME KAnEJIb XHAKOCTW B ZInCTOM I-IAPE I-IPM 

IX’OH3BOJIbHOM YMCJIE KHYACEHA 

AmmTaqnn-IIpeanoxeHa HoBan cncrehfa ypaeHeri&, 0mfcblBam~x pock II acnapeH5ie He6onbmix 
Kanenb mimoc~ki B mmoh9 nape.YpaBHemin,hsonenwpymwie Temo-H MacconepeHoc Menny Kanneir B 
IIapOh4, HMelOT npOCTF JaMKHyTylO l)OpMy H IIpHIJU7Hbl LlJlff IlpaKTH‘IWKHX paCWTOB IIpH nIO6OM 

3HaYe"HH YHCna KHynceHa.@nsHqecKan MO~enb,HaKOTOpOiiOcHOBaHaTeOpHK,slBnKeTCS,lIOcylIWTBy, 

MOaenbIO ~elilMIOpa,HO B&RIO'IaeT TaOIKe U HeKOTOpble HOBbIe XapaK~epHCTHKSi. HanpHMep, @yHKUEiII 

pacnpenenemis CKopocTeSi &lrum hioneeyn, np~6nHnaiomuxcn K IlOBepXHOCTH )KH,lKOcTH, OrniCbIBaeTCn 
yllpOIUeHHbIM TpHHWaTEiMOMeHTIibIM paCllpWeneHHeM rp3Jia. Pe3ynbTalbi aHaJIH3a XOpOIUO COrna- 

cyro~cKcnpyruMH,6oneeCnoWrHbIMH H MeHee 0606ueHHbIMH TeOpHIIMB, HMeH)IUIIMHCn emiTepaType. 
BYac~Hoc~a,~OwiOOnpe~eneHTeMnepa~ypHbri-i CKaqOK B‘XOe &iy~cerfaBnpe~enaXCnnOurHOfiCpemd. 
nOKa3aHO TaKXCe, 'IT0 IIpHMeHeHHe MeTOAa MOMeHTOB MaKceenna Ha OcHOBe npa6nssewr 

nHCa C HCIlOJIb30BaHHeM DyXCTOpOHHerO MaKCBennOBcKOrO paCIIpeLleneHHR IIpHBOmiT K HeBepHMM 
pe3ynbTaTaM. 


